

NTU NLP Lab System at SemEval-2018 Task 10: Verifying Semantic Differences by Integrating Distributional Information and Expert Knowledge

Yow-Ting Shiue¹, Hen-Hsen Huang¹, and Hsin-Hsi Chen^{1,2} ¹Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan ²MOST Joint Research Center for AI Technology and All Vista Healthcare, Taiwan orina1123@gmail.com, hhhuang@nlg.csie.ntu.edu.tw, hhchen@ntu.edu.tw

ABSTRACT

This paper presents the NTU NLP Lab system for the SemEval-2018 Capturing Discriminative Attributes task. Word embeddings, pointwise mutual information (PMI), ConceptNet edges and shortest path lengths are utilized as input features to build binary classifiers to tell whether an attribute is discriminative for a pair of concepts. Our neural network model reaches about **73% F1** score on the test set and ranks the **3rd** in the task. Though the attributes to deal with in this task are all visual, our models are not provided with any image data. The results indicate that visual information can be derived from textual data.

Introduction

- Modern semantic models: good at capturing semantic similarity and relatedness
- Ability to **distinguish** one concept from another similar concept is also core to linguistic competence; important mechanism for teaching and learning
- "subway is a kind of train that runs underground"
- plate v.s. bowl: "a plate is <u>flatter</u>" / "a bowl is <u>deeper</u>"
- A *discriminative attribute* applies to one of the concepts but does not apply to the other.
- Notation:

 $< w_1, w_2, a > + / -$

Distributional Information

[Concatenation of Word Embeddings]

Feature vector = $[emb(w_1) emb(w_2) emb(a)]$

- Train F1: 0.65 / Test F1: 0.34
- Overfit to training vocab \Leftrightarrow test: **all attributes unseen**

[Embeddings Similarity Difference]

If w has a, then it tends to be more similar to a than other words without a. ($sim_1 = sim(w_1, a)$, $sim_2 = sim(w_2, a)$) \rightarrow Rule: $sim_1 > sim_2$ / Feature: $sim_1 - sim_2$

Model	Embedding	Pos. F1	Neg. F1	Macro F1
Rule	1. W2V	0.6512	0.5648	0.6080
Rule	2. fastText	0.6435	0.5565	0.6000
Rule	3. Numberbatch	0.7142	0.5964	0.6553
Rule	4. GloVe	0.6594	0.6022	0.6308
Rule	5. Sense-closest	0.6609	0.5068	0.5838
Rule	6. Sense-first	0.5597	0.6013	0.5805
MLP	[sim x4] 1. – 4.	0.6572	0.6521	0.6546
MLP	[sim x6] 1. – 6.	0.6609	0.6520	0.6564

[PMI Difference]

- PMI is calculated in exact matching manner \rightarrow no propagation of similarity as word vectors
- E.g. high PMI(*red*, *yellow*) & high PMI(*apple*, *banana*)
 → does not imply high PMI(*red*, *banana*)

• \rightarrow less prone to confusion of similar concepts

Model	Features	Pos. F1	Neg. F1	Macro F1
Rule	PMI: 10 words context	0.6986	0.5968	0.6477
Rule	PMI: 20 words context	0.7013	0.5948	0.6481
Rule	PMI: 30 words context	0.6959	0.5896	0.6427
MLP	PMI(10+20+30)	0.7026	0.5723	0.6375
MLP	sim x6 + PMI x3	0.7039	0.6432	0.6735

• Bir	 Binary features based on ConceptNet graph 					
[Ed	ge Connection]	[Shortest Path Length]				
• Is there an edge from w_1 to a ? • Is there an edge from a to w_1 ? • Is there an edge from w_2 to a ? • Is there an edge from a to w_2 ? • Is there an edge from a to w_2 ? • Is there an edge from a to w_2 ? • Is there an edge from a to w_2 ? • Is there an edge from a to w_2 ? • $dis(w_i, a) = 1$ • $dis(w_i, a) = 2$ • $dis(w_i, a) = 3$ • $dis(w_i, a) = 4$ • $dis(w_i, a) \ge 5$						
Model	Rule / Features	Pos. F1	Neg. F1	Macro F1		
Rule	$w_1 \rightarrow a \& w_2 \not\rightarrow a$	0.5140	0.7009	0.6074		
MLP	$w_1 = w_2 \stackrel{r}{\leftrightarrow} a$ for each r	0.4785	0.6376	0.5581		
MLP	$w_1 = w_2 \stackrel{r}{\leftrightarrow} a$ for any r	0.4931	0.6661	0.5796		
Rule	$dis(w_1, a) < dis(w_2, a)$	0.5740	0.6742	0.6241		
MLP	One-hot shortest path lengths	0.6984	0.6223	0.6603		

Submitted Systems

Model	Acc.	Pos. F1	Neg. F1	Macro F1	Rank
[1] Rule: $sim_1 > sim_2$ & PMI ₁ > PMI ₂	0.7047	0.6944	0.7143	0.7044	(4~5)
[2] MLP: sim x6 + PMI(10,20,30) + ConceptNet	0.7303	0.7138	0.7451	0.7294	3

Error Analysis

Ambiguous concept

<mouse, squirrel, plastic> + mouse here: "computer device" instead of "animal" answer dependent on which **sense** is selected

Vague or ambiguous attribute

Attribute expressed only with **single word** \rightarrow sometimes hard to tell attribute meaning even from human perspective <philanthropist, lawyer, active> -

[Positive interpretation] philanthropist: engage in philanthropy actively

lawyer: handle matters under authorization of someone

Relative attribute

w1 does not necessarily but only more likely to have a
<father, brother, old> +

father might not be old when considered isolatedly

- <banker, lawyer, rich> -
 - \rightarrow When to evaluate an attribute relatively?

Conclusions

- Corpus distribution statistics + expert knowledge
- Word embedding & PMI complement each other
- ConceptNet features (sensitive to negative class)
 complement

(corpus-based features (sensitive to **positive** class)

- F1 = 0.7294 [3rd in official run]
- No image features → possible to learn substantially about visual attributes solely from text
- Limited advancement of learning-based over rule-based
 → design mechanism of "comparing" features of two
 concepts