

Improving Word and Sense Embedding with Hierarchical Semantic Relations

<u>Yow-Ting Shiue</u>, Department of Computer Science and Information Engineering, National Taiwan University

Wei-Yun Ma, Institute of Information Science, Academia Sinica

Outline

- I. Introduction
- II. Methods
 - A. Sense Vectors
 - B. Word Vectors
- III. Experimental Results and Analysis Intrinsic Evaluation Extrinsic Evaluation
- IV. Conclusion

Slides: http://goo.gl/LWzZWZ

I. Introduction

Distributional Word2vec (Mikolov et al., 2013), GloVe (Pennington et al., 2014), ... Word Embeddings JointRCM (Yu and Dredze, 2014): synonym ۲ Retrofitting (Faruqui et al., 2015): synonym + single-level hypernym/hyponym + Lexical Resource • Semantic word embeddings (Liu et al., 2015): synonym + antonym + hyponym/hypernym Constrained optimization problem Strength of constraints does not vary with # levels • AutoExtend (Rothe and Schutze, 2015): Distributional Learn synset embeddings from trained word embeddings Sense Embeddings • SensEmbed (lacobacci et al., 2015): + Lexical Resource Utilize relations in BabelNet when computing word similarities, not updating vectors

I. Introduction

Post-processing

- Reverse the order of training on sense-annotated corpus and hyponymhypernym relations
- Relations are sense level → cannot perform post-processing after expending sense vectors to word vectors

II. Methods – Sense Vectors

- Hierarchical relation: hyponym-hypernym
 - Reflects an organized hierarchy of concepts
 - Direct: (X, A), (X, B), (A, A1), ...
 - Multi-level: (X, A1), (X, A2), ...
 - 766,158 (direct & multilevel) hierarchical relations from Word-Net 3.0
- Handling the **Distance** Factor
 - The **closer** two senses are, the **larger impact** they should have on each other during training.

weight(
$$s_1, s_2$$
) = $\max_{i,j} d(s_i, s_j) - d(s_1, s_2) + 1$

• $d(s_i, s_j)$: distance / shortest path length of hyponym-hypernym senses s_i and s_j

X A B A1 A2 B1 B2

II. Methods – Sense Vectors

weight(
$$s_1, s_2$$
) = $\max_{i,j} d(s_i, s_j) - d(s_1, s_2) + 1$

- Incorporating weight factor
 - wn_cnt: let relation pair (s_1, s_2) occur weight (s_1, s_2) times in training file
 - wn_dis: multiply the gradient by weight(s₁, s₂) when using vector of s₁ to update that of s₂, or vice versa
- For comparison
 - wn_all: no any weighting on relations
 - wn_dir: only use direct relations
- Continue to train the pre-processed sense vectors with a sensedisambiguated corpus

II. Methods – Sense Vectors

- Difference of characteristics between semantic relation data and corpus data
 - Relation: fairly accurate relationship, rather sparse
 - Corpus: very dense, describe a variety of possible connections among words
- Pre-training on the hierarchical relations
 - Build a framework of core concepts into the model
 → learn better in subsequent corpus training phase
- Post-processing: for comparison
- Save both target (input) & context (output) vectors

II. Methods – Word Vectors

- Despite benefits of moving from word to sense vectors, performing WSD may not be practical in all applications.
- Mapping pre-trained sense vectors to word vectors
 - First sense (FS): $vec(w) = vec(s_{w,1})$
 - $s_{w,1}$: first sense (predominant sense) of word w
 - Weighted senses (WS):

$$vec(w) = \frac{\sum_{i=1}^{n} freq(w, s_{w,i}) vec(s_{w,i})}{\sum_{i=1}^{n} freq(w, s_{w,i})}$$

• $freq(w, s_{w,i})$: # times word w is associated with sense $s_{w,i}$ in a disambiguated corpus

• Advantage: no need to expand a single sense-level relation (s_1, s_2) into $size(s_1) * size(s_2)$ word-level ones

III. Experimental Results & Analysis

- Intrinsic evaluation: word similarity
- Extrinsic evaluation: sentiment analysis / dependency parsing
- Skip-gram (SG) parameters: dim.: 400 window size: 5 #(negative samples): 15

- Validation
 - Use SimLex-999 to validate for other datasets / WS-353 for SimLex-999
- Corpus: Dec-2015 dump of English Wikipedia
 - Sense-annotated corpus: obtained with Adapted Lesk

III. Experimental Results & Analysis [Sense Vector] Word Similarity

- Use sense vectors to compute word similarities
 - closest: similarity of the closest pair of senses
 - weighted: sum of vectors of all possible senses weighted by frequency
- Rationale of using hierarchical relations
 - Increasing performance with more iterations → word similarity information can be learned from hierarchical relations
 - Multi-level relations > only direct relations ----wn_dir ----wn_all ----wn_cnt ----wn_dis

SimLex-999, hierarchical relations only closest measurement

Slides: http://goo.gl/LWzZWZ

Experimental Results & Analysis Sense Vector Word Similarity

closest measurement

16

Pre

Post

III. Experimental Results & Analysis **[Sense** Vector] Word Similarity

weighted measurement

Pre

Post

III. Experimental Results & Analysis [Sense Vector] Word Similarity [

Pre

Post

III. Experimental Results & Analysis [Word Vector] Word Similarity

wn all

III. Experimental Results & Analysis [Word Vector] Word Similarity

III. Experimental Results & Analysis [Word Vector] Word Similarity

- 10% Corpus
 - More obvious improvement over baseline
 - Our method can be applied to domain-specific tasks
 e.g. biomedical domain
 - Existing ontologies of terms
 - Less available text
 - Retrofitting does not help when corpus is small, but harms the performance a lot

Slides: http://goo.gl/LWzZWZ

wn all

III. Experimental Results & Analysis [Word Vector] Sentiment Analysis

- Movie review dataset (Socher et al., 2013)
- Binary classification (positive/negative)
- Feature: sum of embedding of words
- Classifier: logistic regression

III. Experimental Results & Analysis [Word Vector] Dependency Parsing

- Stanford Neural Network Dependency Parser (Chen and Manning, 2014)
- Evaluate on test set of PTB 88
- Ontological knowledge can serve as a clue for determining whether there is a dependency between two words
 - Retrofitting only includes limited knowledge

IV. Conclusion

- Simple but effective methods of utilizing hierarchical semantic relations to improve sense & word vectors
 - Model the **importance** of a relation according to its **distance**
 - Consistent improvement on intrinsic and extrinsic evaluations
 → directly applicable to existing applications
- Especially useful when corpus is small
 - **Pre-training** is more **reliable** than post-processing in such cases
- Future work: encode **directional** information
 - cherry is a kind of tree so it should inherit the properties of tree
 - But some properties of cherry **might not apply** to all kinds of tree

Thank you!

Yow-Ting Shiue Wei-Yun Ma

orina1123@gmail.com ma@iis.sinica.edu.tw

Slides: http://goo.gl/LWzZWZ