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Abstract—Distributed representations are shown useful in
many NLP tasks. Besides the context, lexical resources also
provide valuable information about lexical units. This paper
proposes simple methods to improve word and sense vectors
by training on multi-level hierarchical semantic relations.
Experiments on both intrinsic and extrinsic tasks show that
our approach leads to consistent improvement competitive
with state-of-the-arts. Moreover, the enhanced vectors are
directly applicable to existing applications.
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I. INTRODUCTION

Distributed word representations have been widely used
in various NLP tasks. Many methods have been proposed
to learn word embedding using large corpus [1], [2], [3],
[4], [5]. To improve the quality of context-based embed-
dings, researchers have explored to make full use of lexical
resources such as WordNet [6]. [7] modify the objective
to include knowledge about synonyms. [8] retrofit word
embeddings by encouraging linked words to have similar
representations, but only synonyms and “direct” (single-
level) hypernyms/hyponyms are considered. [9] utilize
semantic knowledge including synonym, antonym and hy-
ponym/hyernym, and formulate a constrained optimization
problem. However, the strength of constraints does not
vary with the number of levels the hyponym and hypernym
are across.

Another line of research aims to produce sense-specific
embeddings. AutoExtend [10] learns synset embeddings
with WordNet relations as constraints. SensEmbed [11]
uses sense annotated text to train sense vectors and
utilize relations in a semantic network called BabelNet
[12] when computing word similarities. However, these
relations were not used to update the vectors during
training, so the gains from the lexical resource could not
be directly transfered to practical applications. In both
methods, multi-level hyponym-hypernym relations were
not considered. Neither did they provide a way to obtain
better word vectors based on sense vectors.

In this paper, to better utilize hyponym-hypernyms rela-
tions, we propose two new approaches for learning sense
and word embeddings. The first one improves context-
based sense embeddings by pre-training or post-processing
on such relations. The second one maps the sense em-
beddings trained on relations to word embeddings and
continues to train them on an ordinary corpus. We model

the importance of a relation by a function of its distance.
The main idea is that all hyponym-hypernym relations,
including multi-level ones, are supposed to be used and
should be used differentially according to their distances.

II. METHODS

A. Sense Vectors

The hyponym-hypernym relations, which we referred to
as hierarchical relations, reflects an organized hierarchy
of concepts in the language. In this paper we treat the
relations as undirected ones and evaluate mainly with the
word similarity task, which is symmetric by definition.

We dumped 766,158 hierarchical relations from Word-
Net 3.0, including direct and multi-level ones, and use a
file containing the relation pairs one per line as the input
to the Word2vec Skip-gram (SG) model.

Handling the distance factor: Hierarchical relations can
have different distances. For instance, “cherry” and “tree”
are close in the WordNet hierarchy, but “cherry” and
“object” have a longer distance. The closer the two senses
are, the larger impact they should have on each other
during training. We use a linear function to reflect the
level of impact. Let d(si, sj) be the distance or shortest
path length of hyponym-hypernym senses si and sj in the
WordNet graph of synsets. The weight of a pair (s1, s2)
is: weight(s1, s2) = maxi,j d(si, sj)− d(s1, s2) + 1
where the last term prevents zero weights.

We experimented two approaches to incorporate this
weight factor into the SG model.
(1) wn cnt: We let the relation pair (s1, s2) occur
weight(s1, s2) times in the training file.
(2) wn dis: When using the vector of sense s1 to update
that of sense s2, or vice versa, multiply the gradient by
weight(s1, s2).

The version without any weighting on relations is
denoted as wn all. To verify the usefulness of multi-level
relations, we implement a version called wn dir in which
only direct ( d(s1, s2) = 1 ) relation pairs are used.

Pre-training v.s. post-processing: To leverage hierarchi-
cal relations, we consider initializing the sense vectors
with the vectors pre-trained on the relations (wn all,
wn cnt, wn dis). We save both target and context vec-
tors for initialization. The initialized vectors can then be
trained on a sense-annotated corpus. The motivation be-
hind this design lies in the difference of characteristics be-
tween semantic relation data and corpus data. The relation



data provides fairly accurate relationship between concepts
but is rather sparse, while the corpus data is very dense and
describes a variety of possible types of connection among
words. By pre-training on the hierarchical relations, we
aim to build a framework of core concepts into the model,
so that it may learn better in the subsequent corpus training
phase. For a comparison, we also experimented a version
in which the sense vectors trained with corpus are post-
processed with WordNet relations.

B. Word Vectors

Although [11] has shown the benefits of moving from
word to sense vectors, performing word sense disambigua-
tion (WSD) may not be practical in all applications. When
dealing with very large text data, WSD can be overly time-
consuming. Therefore, we also propose an approach to
obtaining relation-enhanced word vectors. We design two
methods for mapping pre-trained sense vectors to word
vectors:
(1) First sense (FS): For each word w, we assign the
vector of its first sense (predominant sense) sw,1 to its
initial vector.
(2) Weighted senses (WS): Let freq(w, sw,i) be the
number of times word w is associated with sense sw,i

in a disambiguated corpus. The initial vector of word w
with n possible senses is:

vec(w) =

∑n
i=1 freq(w, sw,i) vec(sw,i)∑n

i=1 freq(w, sw,i)
We can then use an ordinary corpus to train the initialized
word vectors. One advantage of this mapping approach
is that there is no need to expand a sense-level relation
(s1, s2) into size(s1) ∗ size(s2) word-level ones, which
will results in overwhelmingly large number of relations
since we are including multi-level hierarchical relations.

III. EXPERIMENTAL RESULTS AND ANALYSIS

In the experiments, we mainly follow the choices of
[11]. The dimensionality is 400, the window size is 5,
and the number of negative samples is 15. We use the
SimLex-999 [13] word similarity dataset as a validation set
to select one best model for each method among different
number of iterations. To also report the performance on
SimLex-999, we use WS-353 [14] for validation.

We use the December-2015 dump of the English
Wikipedia as our training corpus. The data is converted
to plaintext and then tokenized with CoreNLP Document-
Preprocessor1. To obtain a sense-annotated corpus, the
pywsd2 implementation of Adapted Lesk algorithm [15]
is adopted.

A. Sense Vectors

We use the Word2vec SG model trained only on the
sense-annotated corpus as the baseline. We also compare
with the result of SensEmbed reported by [11] and the
result of pre-trained AutoExtend synset embeddings.3

1http://nlp.stanford.edu/software/tokenizer.shtml
2https://github.com/alvations/pywsd
3Both results are not directly comparable to ours due to different

training corpus, parameters and sense systems.

To adopt sense vectors to compute word similarities, we
use two methods.
(1) closest: The similarity of two words is defined to be
the similarity of their closest senses.
(2) weighted: We compose the vector of a word by
summing the vectors of all its possible senses, weighted by
the word-sense frequency in the disambiguated corpus.4

Rationale of using hierarchical relations: To show the
usefulness of hierarchical relations, we demonstrate the
performance of SG trained solely on relation without
any corpus data. The results on the SimLex-999 dataset
with the closest measurement are shown in Table I. The
increasing performance of wn all and wn dis with more
number of iterations shows that it is possible to learn
word similarity information from hierarchical relations.
Using multi-level relations is better than using only direct
relations (wn dir). The best result of wn cnt and wn dis
are both higher than the best of wn all, showing that a
linear function of the relation distance can help.

Word similarity tasks: We evaluate the relation-
enhanced sense vectors on standard word similar-
ity/relatedness datasets: RG-65 [16], WS-353, WS-SIM,
WS-REL [17], YP-130 [18], MEN [19] and SimLex-999.
According to Table II (Full Corpus part), under the closest
measurement, pre-training leads to some improvement.
Under weighted, the models post-processed with wn dis
outperforms the baseline on RG-65, WS-353 and YP-130.
However, post-processing lowers the performance in some
cases so application-specific tuning is required. In general,
it is more important to consider relation weights in post-
processing than in pre-training, possibly because the noise
introduced by long-distance relations could be “corrected”
when training on the corpus.

The difference between the proposed methods and the
baseline is slight, probably because the amount of relation
data is too small compared to the corpus. Therefore,
we use 10% of the disambiguated corpus to conduct
the experiments and report the results in the left part
of Table II. Due to space limit we only include two
datasets on which the difference is less obvious in the Full
Corpus experiments. For pre-training, wn cnt is preferred
to wn dis, since in the initialization step the vectors are
still rather random and it is less meaningful to update

# iter wn dir wn all wn cnt wn dis
Rand. 0.053

5 0.054 0.117 0.319 0.123
10 0.039 0.133 0.366 0.136
50 0.129 0.226 0.355 0.243

100 0.127 0.284 0.328 0.306

Table I: Performance on the SimLex-999 dataset of
the sense models trained solely on hierarchical relations
(closest, Spearman correlation).

4Note that this is different from the “weighted” measurement used
by [11], which weighs on the similarities instead of vectors. In our
pilot experiments, our method leads to consistently higher correlation
coefficient.



Similarity Method 10% Corpus Full Corpus
WS353 MEN RG65 WS353 WS-S WS-R YP130 MEN SL999

closest

SG Baseline 0.674 0.727 0.836 0.673 0.780 0.556 0.747 0.761 0.444

Pre
wn all 0.677 0.730 0.809 0.675 0.785 0.549 0.759 0.761 0.448
wn cnt 0.677 0.731 0.812 0.673 0.783 0.543 0.742 0.749 0.441
wn dis 0.668 0.729 0.805 0.674 0.783 0.538 0.740 0.745 0.446

Post
wn all 0.404 0.357 0.802 0.538 0.673 0.302 0.677 0.563 0.434
wn cnt 0.390 0.361 0.811 0.525 0.684 0.295 0.649 0.570 0.443
wn dis 0.400 0.355 0.813 0.557 0.680 0.380 0.612 0.579 0.387

SensEmbed * - - 0.825 - 0.693 0.488 0.492 0.712 -
AutoExtend * - - 0.867 0.557 0.730 0.387 0.695 0.747 0.517

weighted

SG Baseline 0.672 0.735 0.822 0.697 0.777 0.609 0.621 0.767 0.416

Pre
wn all 0.678 0.747 0.819 0.691 0.773 0.589 0.614 0.765 0.425
wn cnt 0.690 0.743 0.833 0.689 0.770 0.590 0.612 0.768 0.417
wn dis 0.675 0.732 0.827 0.699 0.778 0.605 0.616 0.766 0.430

Post
wn all 0.654 0.644 0.835 0.685 0.762 0.561 0.609 0.742 0.405
wn cnt 0.632 0.608 0.826 0.646 0.739 0.480 0.615 0.704 0.397
wn dis 0.653 0.643 0.841 0.699 0.760 0.585 0.633 0.738 0.404

SensEmbed * - - 0.877 - 0.776 0.639 0.446 0.783 -
AutoExtend * - - 0.730 0.605 0.721 0.464 0.664 0.732 0.463

Table II: Word similarity performance of sense models (Spearman correlation). *: different settings.

Method 10% Corpus Full Corpus
WS353 MEN RG65 WS353 WS-S WS-R YP130 MEN SL999 SA Dependency

SG Baseline 0.686 0.672 0.777 0.720 0.798 0.644 0.501 0.759 0.398 0.761 85.90 / 82.62

wn all FS 0.695 0.712 0.804 0.729 0.804 0.656 0.519 0.762 0.401 0.760 86.60 / 83.39
WS 0.717 0.715 0.809 0.724 0.802 0.650 0.510 0.762 0.405 0.765 86.29 / 83.15

wn cnt FS 0.697 0.704 0.829 0.720 0.797 0.644 0.500 0.761 0.406 0.764 86.74 / 83.68
WS 0.717 0.726 0.825 0.725 0.793 0.650 0.510 0.767 0.400 0.759 87.82 / 84.92

wn dis FS 0.700 0.718 0.822 0.724 0.802 0.664 0.516 0.756 0.409 0.762 85.93 / 82.71
WS 0.693 0.713 0.805 0.724 0.787 0.657 0.526 0.762 0.405 0.764 87.20 / 84.26

Retro(WNall) 0.615 0.588 0.827 0.670 0.788 0.556 0.551 0.711 0.475 0.770 85.97 / 82.77

Table III: Performance of word models on word similarity (Spearman correlation), sentiment analysis (accuracy), and
dependency parsing (UAS/LAS).

one with another with a large weight. Post-processing can
degrade the performance a lot when there is no sufficient
corpus data.

B. Word Vectors

For this set of experiments, we obtain relation-enhanced
word vectors by taking the following steps: 1) take the
model trained solely on relations; 2) map the sense
vectors to word vectors (by FS or WS); 3) continue
to train the word vectors on Wikipedia. We compare
with the retrofitting method [8], using the released im-
plementation to process our SG baseline model with
the WNall setting, which includes synonyms and direct
hypernyms/hyponyms.

Word similarity tasks: We evaluate our word vectors
on the word similarity datasets and report the results
in Table III. As can be seen, our initialization method
leads to consistent improvement across different datasets.
Retrofitting, in contrast, performs rather unstably, for
which dramatic drop in performance can be observed on
WS-353, WS-REL and MEN. This might be explained by
the fact that closely-related concepts could be far apart
in the WordNet hierarchy. For example, in WS-REL, the
shortest distance on WordNet between (country, citizen) is
8. Multi-level relations help to capture more connections
among words. In fact, our wn dis pre-training with FS
mapping model does rank this pair higher than (computer,
news), whose shortest distance is 10. The two pairs are
ranked reversely by the baseline model and retrofitting,

which does not use multi-level relations.
We also conduct experiments with 10% of the corpus

and show the result in the left part of Table III. With less
corpus data, more obvious improvement over the baseline
can be achieved by our methods. This indicates that our
method can be applied to some domain-specific tasks.
For example, in the biomedical domain, there might be
existing ontologies of terms but less available text. In
contrast, retrofitting does not help on the two datasets
when the corpus data is small.

Sentiment analysis: We use the movie review dataset
provided by [20] and train a logistic regression classi-
fier with l2-regularization for binary classification (posi-
tive/negative). The feature of each sentence is the average
of the embeddings of all words in it. As can be seen in
Table III, most of our enhanced word vectors can serve
as better features and help the classifier to achieve higher
performance, but not as effective as retrofitting.

Dependency parsing: We use different embeddings for
input features in the Stanford Neural Network Dependency
Parser [21] and report unlabeled (UAS) and labeled at-
tachment scores (LAS) on the test set of English Penn
Treebank (PTB). We set the embedding size to 400 and
use the default for other parameters. Under this setting,
the model with random initial embeddings achieves UAS
= 85.58 and LAS = 82.42. As can be seen in Table III,
all of our methods outperform the SG baseline, and
wn cnt pre-training with WS mapping performs the best.
The improvement might be attributed to the inclusion of



ontological knowledge, which can serve as a clue for
determining whether there is a dependency between two
words.

IV. CONCLUSION

In this paper we propose simple but effective methods of
utilizing hierarchical semantic relations to improve sense
and word vectors. We model the importance of a relation
according to its distance. Our results are competitive
with state-of-the-art methods, and the consistent improve-
ment on intrinsic and extrinsic evaluations shows that
our enhanced vectors are directly applicable to existing
applications. When the amount of corpus data is limited,
our methods are especially useful, and pre-training is more
reliable than post-processing in such cases.

In the future, it is worth investigating how to encode
directional information. For example, “cherry” is a kind
of “tree” so it should inherit the properties of “tree”, but
some properties of “cherry” might not apply to all kinds
of “tree”.
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