

# **Correcting Chinese Word Usage Errors for Learning Chinese as a Second Language**

Yow-Ting Shiue<sup>1</sup>, Hen-Hsen Huang<sup>1</sup>, and Hsin-Hsi Chen<sup>1,2</sup> <sup>1</sup>Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan <sup>2</sup>MOST Joint Research Center for AI Technology and All Vista Healthcare, Taipei, Taiwan orina1123@gmail.com, hhhuang@nlg.csie.ntu.edu.tw, hhchen@ntu.edu.tw

### **Abstract**

With more and more people around the world learning Chinese as a second language, the need of Chinese error correction tools is increasing. In the HSK dynamic composition corpus, word usage error (WUE) is the most common error type. In this paper, we build a neural network model that considers both target erroneous token and context to generate a correction vector and compare it against a candidate vocabulary to propose suitable corrections. To deal with potential alternative corrections, the top five proposed candidates are judged by native Chinese speakers. For more than 91% of the cases, our system can propose at least one acceptable correction within a list of five candidates. To the best of our knowledge, this is the **first research** addressing **general**type Chinese WUE correction. Our system can help non-native Chinese learners revise their sentences by themselves.

### **Neural Network-based Correction Generation Model**



### Introduction

- Chinese word usage error (WUE): incorrect token involving morphological, syntactical, or semantical problems
- Incorrect word form e.g. \*決解 ju'e ji'e
- Correct existent word that is improper for its context

### **Input Features**



決

С

X O

00

S

+

解

+

### **Evaluation**

| Target C                                          | Context              | Acc    | MRR     | Hit@5    |  |  |  |
|---------------------------------------------------|----------------------|--------|---------|----------|--|--|--|
| features f                                        | eatures              |        |         |          |  |  |  |
| Baselines (No training on the WUE dataset)        |                      |        |         |          |  |  |  |
| - N                                               | l-gram LM            | 0.1659 | 0.2438  | 0.3268   |  |  |  |
| - F                                               | RNNLM                | 0.1468 | 0.2208  | 0.2847   |  |  |  |
| · (                                               | C2V <sub>ctx</sub>   | 0.0714 | 0.1170  | 0.1575   |  |  |  |
| <b>Correction Generation Model – C2V</b>          |                      |        |         |          |  |  |  |
| C2V <sub>tgt</sub> -                              |                      | 0.2507 | 0.3030  | 0.3561   |  |  |  |
| . (                                               | C2V <sub>ctx</sub>   | 0.1249 | 0.1746  | 0.2273   |  |  |  |
| C2V <sub>tgt</sub> C                              | C2V <sub>ctx</sub>   | 0.3249 | 0.3891  | 0.4566   |  |  |  |
| <b>Correction Generation Model – CWE + Others</b> |                      |        |         |          |  |  |  |
| CWE <sub>w</sub>                                  |                      | 0.2898 | 0.3545  | 0.4195   |  |  |  |
| + CWE <sub>c</sub>                                |                      | 0.2946 | 0.3570  | 0.4234   |  |  |  |
| + C2V <sub>tgt</sub> +                            | - C2V <sub>ctx</sub> | 0.3512 | 0.4250  | 0.5024   |  |  |  |
| + POS                                             |                      | 0.3717 | 0.4378  | 0.5063   |  |  |  |
| Effect of LM Re-ranking                           |                      |        |         |          |  |  |  |
| Model                                             | Acc.                 | MRR    | Hit@5   | Hit@10   |  |  |  |
| Best MLP                                          | 0.3717               | 0.4378 | 0.5063  | 0.5688   |  |  |  |
| + N-gram LM                                       | 0.3727               | 0.4605 | 0.5561  | 0.6439   |  |  |  |
| + RNNLM                                           | 0.3727               | 0.4527 | 0.5278  | 0.6205   |  |  |  |
| Human Evaluation                                  |                      |        |         |          |  |  |  |
| Evaluation                                        | Acc.                 | MRR    | Hit@5   | Hit@10   |  |  |  |
| <b>Ground-truth</b>                               | 0.3727               | 0.4605 | 0.5561  | 0.6439   |  |  |  |
| + Annotation                                      | 0.6829               | 0.7784 | 0.9122  | 0.9171   |  |  |  |
| Performance on most frequent POS tags             |                      |        |         |          |  |  |  |
| POS (#)                                           | Acc                  | MRR    | Hit@5 M | ean rank |  |  |  |

- <u>Goal</u>: given a known erroneous token in a sentence segment → generate suitable correction
- <u>Criteria for suitable correction</u>
- 1. Correctness (C): result is syntactically and semantically correct
- 2. Similarity (S): meaning close to writer's intended meaning

\*生活方式已經**猛烈**地改變了 (The way of living has been fiercely changed.)

\*生活方式已經暴烈地改變了

( ... has been **overpoweringly** changed. )

生活方式已經緩慢地改變了

- ( ... has been **slowly** changed. )
- √ 生活方式已經**劇烈**地改變了
  - ( ... has been dramatically changed. )

ged.) O O

C S

X O

Ο Χ

C S

## **CWE Position-Insensitive Character Embedding (CWE<sub>c</sub>)**

解決



- Context2vec Features C2V<sub>tgt</sub>
- 可是每個人的[境況]都千差萬別
- C2V<sub>ctx</sub> = LSTM(可是 每 個 人 的) ⊕LSTM(千差萬別 都)

### **POS Features**

解決

- 70% POS unchanged after correction
- Systematic changes e.g. NN  $\leftrightarrow$  VV
- One-hot encoding as input features

# LM Re-ranking

\*到山頂之間路走得不容易

\*發生這種情況的**情緒**很多 (Many **emotions** happen this situation.)

發生這種情況的**因素**很多

- V (Many **factors** can lead to this O? situation.)
  - → C > S: incorrect sentence can confuse language learner!
  - Main contributions
  - First study to correct all types of WUEs
    Human evaluation → at least one acceptable correction within top five candidates for more than 91% cases
  - 3. HSK WUE dataset with additional human annotations

| (The road <b>between</b> | the hilltop was not |
|--------------------------|---------------------|
| easy to walk.)           |                     |

\*到山頂**期間**路走得不容易 (The road **period** the hilltop ...) 到山頂**的**路走得不容易 (The road **to** the hilltop ...)

- Model sometimes generates candidates that seriously violate correctness criterion
- LM probability reflects the level of correctness

$$r_{\rm com} = \frac{1}{\frac{\alpha}{r_{\rm LM}} + \frac{1 - \alpha}{r_{\rm DNN}}}$$

• *r*<sub>com</sub> can be interpreted as rank, smaller better

|  | VV (316) | 0.67 | 0.77 | 0.91 | 26.12 |
|--|----------|------|------|------|-------|
|  | NN (277) | 0.64 | 0.73 | 0.88 | 73.97 |
|  | AD (130) | 0.65 | 0.75 | 0.88 | 96.16 |
|  | P (62)   | 0.81 | 0.88 | 0.95 | 3.10  |
|  | VA (45)  | 0.60 | 0.76 | 0.98 | 1.98  |
|  | DEV (23) | 1.00 | 1.00 | 1.00 | 1.00  |
|  | PN (21)  | 0.71 | 0.80 | 0.95 | 2.33  |
|  |          |      |      |      |       |

### Conclusion

- MLP correction generation model considers
  both target & context
- Apply LM re-ranking to emphasize correctness
- Future work: phonetical similarity
  e.g. (影響 yǐng xiǎang,印象 yìn xiàang)