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Abstract 

With the aid of recently proposed word embedding algorithms, the study of semantic similarity 

has progressed and advanced rapidly. However, many natural language processing tasks need 

sense level representation. To address this issue, some researches propose sense embedding 

learning algorithms. In this paper, we present a generalized model from the existing sense 

retrofitting model. The generalization takes three major components: semantic relations 

between the senses, the relation strength and the semantic strength. In the experiments, we show 

that the generalized model outperforms the previous approaches in three aspects: semantic 

relatedness, contextual word similarity and semantic difference. 

1 Introduction 

The distributed representation of word model (word embedding) has drawn great interest in recent years 

due to its ability to acquire syntactic and semantic information from a large unannotated corpus (Mikolov 

et al., 2013; Pennington et al., 2014). With the pre-trained word embedding, some researches propose 

post-processing models that incorporate with the existing semantic knowledge into the word embedding 

model (Faruqui et al., 2015; Yu and Dredze, 2014). However, word embedding models use only one 

vector to represent a word, and are problematic in some natural language processing applications that 

require sense level representation (e.g., word sense disambiguation, semantic relation identification, 

etc.). As a result, some researches try to resolve the polysemy and homonymy issue and introduce sense 

level embedding, either act as pre-process (Iacobacci et al., 2015) or post-process (Jauhar et al., 2015) 

fashion. 

In this research, we focus on the post-processing sense retrofitting approach and propose GenSense, 

a generalized sense embedding learning framework that retrofits a pre-trained word embedding via 

incorporating with the semantic relations between the senses, the relation strength and the semantic 

strength. Although some parts of the idea are not new, it is the first time of putting all the parts into a 

generalized framework. Our proposed GenSense for generating low-dimensional sense embedding is 

inspired from sense retro (Jauhar et al., 2015), but has three major differences. First, we generalize the 

semantic relations from positive relations (e.g., synonyms, hyponyms, paraphrase, etc.) to positive and 

negative relations (e.g., antonyms). Second, each relation incorporates with both the semantic strength 

and the relation strength. Within a semantic relation, there should be a weighting for each semantic 

strength. For example, although jewel has the synonyms gem and rock, it is clear that the similarity 

between (jewel, gem) is higher than (jewel, rock), and thus (jewel, gem) should have higher weight. Last, 

GenSense gives different relations with different relation strengths. For example, if the objective is to 

train a sense embedding that can distinguish between the positive and negative sense, then the weight 

for the negative relation (e.g., antonyms) should be higher, and vice versa. The experimental results 

suggest the relation strengths play a role in balancing the relations and are application dependent. With 

an objective that considers these three parts, the sense vectors can be learned and updated via running a 

belief propagation process on the relation constrained network. 
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In the experiments, we show that our proposed GenSense model outperforms the previous approaches 

in three types of datasets: semantic relatedness, contextual word similarity and semantic difference. 

While the generalized model of considering all the relations performs well in the semantic and 

relatedness tasks, we also find that the antonym relation is in favor of the semantic difference experiment. 

The remainder of this paper is organized as follows. Section 2 gives a survey on the related works. 

Section 3 defines the generalized sense retrofitting model. The experimental setup is in Section 4. 

Section 5 shows and discusses the experimental results. Section 7 concludes the remarks. 

2 Related Works 

The study of the representation of words has a long history. Early approaches include utilizing the term-

document occurrence matrix from a large corpus and then perform dimension reduction techniques such 

as singular value decomposition (latent semantic analysis) (Bullinaria and Levy, 2007; Deerwester et al., 

1990). Beyond that, recent word embedding approaches are more focus on neural-style (Dragoni and 

Petrucci, 2017; Mikolov et al., 2013; Pennington et al., 2014) and performs well on syntactic and 

semantic tasks. Apart from the unsupervised word embedding learning models, there are plenty of 

ontologies that contain lexical knowledge, such as WordNet (Fellbaum, 1998), Roget’s 21st Century 

Thesaurus (Kipfer and Institute, 1993) or the paraphrase database (Pavlick et al., 2015). As a result, 

many researches combine the word embedding with ontological resources, either in a joint training (Bian 

et al., 2014; Liu et al., 2016; Yu and Dredze, 2014) or a post-processing (Faruqui et al., 2015) fashion. 

When the need for sense embedding is getting higher, some researches are inspired from the word level 

embedding learning model and propose sense level embedding (Iacobacci et al., 2015; Jauhar et al., 

2015; Lee and Chen, 2017). Although some evidence shows that the sense embedding cannot improve 

every natural language processing task (Li and Jurafsky, 2015), the benefit of having a sense embedding 

for improving tasks that need sense level representation is still in great need (Azzini et al., 2012; Ettinger 

et al., 2016; Qiu et al., 2016). 

3 Generalized Sense Retrofitting Model 

Let 𝑉 = {𝑤1, … , 𝑤𝑛} be a vocabulary of a trained word embedding and |𝑉| be its size. The matrix �̂� will 

be the pre-trained collection of vector representations �̂�𝑖 ∈ ℝ𝑑, where 𝑑 is the dimensionality of a word 

vector. Each 𝑤𝑖 ∈ 𝑉 is learned using a standard word embedding technique (e.g., GloVe (Pennington et 

al., 2014) or Word2Vec (Mikolov et al., 2013)). Let Ω = (𝑇, 𝐸) be an ontology that contains the semantic 

relationship, where 𝑇 = {𝑡1, … , 𝑡𝑚} is a set of senses and |𝑇| is total number of senses. The edge (𝑖, 𝑗) ∈
𝐸 indicates a semantic relationship of interest (e.g., synonym) between 𝑡𝑖 and 𝑡𝑗. In our scenario, the 

edge set 𝐸 consists of several disjoint subsets of interest (i.e., 𝐸 = 𝐸𝑠1
∪ 𝐸𝑠2

∪ … ∪ 𝐸𝑠𝑘
). For example, 

(𝑖, 𝑗) ∈ 𝐸𝑠1
 if and only if 𝑡𝑗 is the synonym of 𝑡𝑖. We use �̂�𝑡𝑗

 to denote the word form vector of 𝑡𝑗 (one 

should notice that �̂�𝑡𝑗
 and �̂�𝑡𝑘

 may map to the same vector representation even if 𝑗 ≠ 𝑘). Then the goal 

is to learn a new matrix S = (𝑠1, … , 𝑠𝑚) such that each new sense vector is close to its word form vertex 

and its synonym neighbors. The basic form that considers only synonym relation for the objective of the 

sense retrofitting model is: 

∑ [𝛼1𝛽𝑖𝑖‖𝑠𝑖 − �̂�𝑡𝑖
‖

2
+ 𝛼2 ∑ 𝛽𝑖𝑗‖𝑠𝑖 − 𝑠𝑘‖2

(𝑖,𝑘)∈𝐸𝑠1

]

𝑚

𝑖=1

 (1) 

where 𝛼 balances the importance of the word form vertex and the synonym, and 𝛽s control the strength 

of the semantic relations. From equation 1, the learned new sense vectors will close to its synonyms, 

meanwhile constraining its distance with its original word form vector. In addition, this equation can be 

further generalized to consider all the relations: 

∑ [𝛼1𝛽𝑖𝑖‖𝑠𝑖 − �̂�𝑡𝑖
‖

2
+ 𝛼2 ∑ 𝛽𝑖𝑗‖𝑠𝑖 − 𝑠𝑘‖2

(𝑖,𝑘)∈𝐸𝑠1

+ ⋯ ]

𝑚

𝑖=1

 (2) 

Apart from the positive sense relation, we now introduce three types of special relations. The first 

one is the positive contextual neighbor relation 𝑠2. (𝑖, 𝑗) ∈ 𝐸𝑠2
 if and only if 𝑡𝑗 has only one sense. In 

our model, we use the word form vector to represent the neighbors of the 𝑡𝑖s in 𝐸𝑠2
. Those neighbors 
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are viewed as positive contextual neighbors as they learned from the context of a corpus (e.g., word2vec 

trained with Google News corpus) with positive meaning. The second is the negative sense relation 𝑠3 

(e.g., antonym). The negative senses are used in a subtraction fashion for pushing the sense away from 

the positive meaning. The last is the negative contextual neighbors 𝑠4. Just like the positive contextual 

neighbors, the negative contextual neighbors were learned from the context of a corpus, but with 

negative meaning. 

Figure 1 illustrates an example of the relation network. In Figure 1, gay may have two meanings: (1) 

bright and pleasant; promoting a feeling of cheer and (2) someone who is sexually attracted to persons 

of the same sex. If we focus on the first sense, then our model can attract 𝑠𝑔𝑎𝑦1
 to its word form vector 

�̂�𝑔𝑎𝑦1
 , its synonym 𝑠𝑔𝑙𝑎𝑑1

  its positive contextual neighbor �̂�𝑗𝑜𝑙𝑙𝑦 . But in the same time, it will push 

𝑠𝑔𝑎𝑦1
from its antonym 𝑠𝑠𝑎𝑑1

and its negative contextual neighbor �̂�𝑑𝑢𝑙𝑙. 

 

 
 

Figure 1. An illustration of the relation network. Different textures of the nodes represent different 

roles (e.g., synonym, antonym, etc.) in the GenSense model. 

 

To formulize the above scenario and consider all the parts, the equation 2 would become: 

∑ [𝛼1𝛽𝑖𝑖‖𝑠𝑖 − �̂�𝑡𝑖
‖

2
+ 𝛼2 ∑ 𝛽𝑖𝑗‖𝑠𝑖 − 𝑠𝑗‖

2

(𝑖,𝑗)∈𝐸𝑠1

+ 𝛼3 ∑ 𝛽𝑖𝑗‖𝑠𝑖 − �̂�𝑗‖
2

(𝑖,𝑗)∈𝐸𝑠2

𝑚

𝑖=1

− 𝛼4 ∑ 𝛽𝑖𝑗‖𝑠𝑖 − 𝑠𝑗‖
2

(𝑖,𝑗)∈𝐸𝑠3

− 𝛼5 ∑ 𝛽𝑖𝑗‖𝑠𝑖 − �̂�𝑗‖
2

(𝑖,𝑗)∈𝐸𝑠4

]                                         (3) 

We therefore apply an iterative updating method to the solution of the above convex objective 

function (Bengio et al., 2006). Initially, the sense vectors are set to their corresponding word form 

vectors (i.e., 𝑠𝑖 ← �̂�𝑡𝑖
 ∀𝑖 ). Then in the following iterations, the updating formula for 𝑠𝑖 would be: 

𝑠𝑖 =
−𝛼5 ∑ 𝛽𝑖𝑗�̂�𝑗𝑗:(𝑖,𝑗)∈𝐸𝑠4

− 𝛼4 ∑ 𝛽𝑖𝑗𝑠𝑗𝑗:(𝑖,𝑗)∈𝐸𝑠3
+ 𝛼3 ∑ 𝛽𝑖𝑗�̂�𝑗𝑗:(𝑖,𝑗)∈𝐸𝑠2

+ 𝛼2 ∑ 𝛽𝑖𝑗𝑠𝑗𝑗:(𝑖,𝑗)∈𝐸𝑠1
+ 𝛼1𝛽𝑖𝑖�̂�𝑡𝑖

−𝛼5 ∑ 𝛽𝑖𝑗𝑗:(𝑖,𝑗)∈𝐸𝑠4
− 𝛼4 ∑ 𝛽𝑖𝑗𝑗:(𝑖,𝑗)∈𝐸𝑠3

+ 𝛼3 ∑ 𝛽𝑖𝑗𝑗:(𝑖,𝑗)∈𝐸𝑠2
+ 𝛼2 ∑ 𝛽𝑖𝑗𝑗:(𝑖,𝑗)∈𝐸𝑠1

+ 𝛼1𝛽𝑖𝑖

(4) 

A formal description of our proposed GenSense method is shown in Algorithm 1. In Algorithm 1, the 

β parameters are retrieved from the ontology. The ϵ is a threshold for deciding whether to update the 

sense vector or not, which is used as a stopping criteria when the difference between the new sense 

vector and the original sense vector is too small.  Experimentally, 10 iterations are sufficient to minimize 

the objective function from a set of starting vectors to produce effective sense retrofitted vectors. 

4 Experiments 

We evaluate GenSense with three types of experiments: semantic relatedness, contextual word 

similarities, and semantic difference. In testing phase, if a test dataset has missing words, we use the 

average of all sense vectors to represent the missing word. Note that our reported results of vanilla sense 

embedding may be slightly different from the other researches due to the treatment of missing words 

and the similarity computation method. Some researches use zero vector to represent the missing words, 

whereas some remove those missing words from the dataset. However, within this research the reported 

performance can be compared due to the same missing word processing method and the same similarity 

computation method. 
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Algorithm 1 GenSense 

Input: A pre-trained word embedding �̂�, a relation ontology Ω = (𝑇, 𝐸), hyper-parameters 

α  and parameters β, number of iterations 𝑚𝑎𝑥_𝑖𝑡, the convergence criteria for 

sense vectors ϵ. 

Output: A trained sense embedding 𝑆  

1: for 𝑖 = 1 𝐭𝐨 𝑚 do 

2: 𝑠𝑖
(0)

← �̂�𝑡𝑖
 

3: end for 

4: for 𝑖𝑡 = 1 𝐭𝐨 𝑚𝑎𝑥_𝑖𝑡 − 1 do 

5: for 𝑖 = 1 𝐭𝐨 𝑚 do 

6: Compute 𝑠𝑖
𝑡𝑚𝑝

 using equation (4). 

7: if ‖𝑠𝑖
𝑡𝑚𝑝 − 𝑠𝑖

(𝑖𝑡−1)
‖ ≥ ϵ then 

8: 𝑠𝑖
(𝑖𝑡)

← 𝑠𝑖
𝑡𝑚𝑝

  

9: else 

10: 𝑠𝑖
(𝑖𝑡)

← 𝑠𝑖
(𝑖𝑡−1)

  

11: end if 

12: end for 

13: end for 

14: return 𝑆 

 

4.1 Experimental Setup 

We adopt the GloVe model in our experiment (Pennington et al., 2014). The pre-trained GloVe word 

embedding is trained on Wikipedia and Gigaword-5 (6B tokens, 400k vocab, uncased, 50d vectors). 

Roget’s 21st Century Thesaurus (Kipfer and Institute, 1993) (Roget) is selected for building ontology 

in our experiments as it contains the strength information of the senses. As Roget does not provide the 

ontology directly, we manually built a synonym ontology and an antonym ontology from the resource. 

The vocabulary from GloVe pre-trained word embedding is used for fetching and building the ontology 

from Roget. In Roget, there are three levels of synonym relations, we set 𝛽s to 1.0, 0.6 and 0.3 for the 

nearest to the farthest synonyms. The antonym relation is built in the same way. For each sense, 𝛽𝑖𝑖 is 

set to the sum of all the relation specific weights. Unless specifically address, αs are set to 1 in the 

experiments. We set the convergence criteria for sense vectors to ϵ = 0.1 with the number of iterations 

of 10. With the capability of generalization, we run three types of the model: GenSense-syn (only 

considers the synonyms and positive contextual neighbors), GenSense-ant (only considers the antonyms 

and negative contextual neighbors) and GenSense-all (considers everything). 

4.2 Semantic Relatedness 

We downloaded four semantic relatedness benchmark datasets from the web: MEN (Bruni et al., 2014), 

MTurk (Radinsky et al., 2011), Rare Words (RW) (Luong et al., 2013) and WordSim353 (WS353) 

(Finkelstein et al., 2001). In MEN dataset, there are two versions of the word pairs: lemma and natural 

form. We show the natural form in the experimental result, but the performances on two datasets are 

similar. In each dataset, there is a list of word pairs together with their corresponding human rated scores.  

A higher score value indicates higher semantic similarity. For example, the score of (journey, voyage) 

is 9.29 and the score of (king, cabbage) is 0.23 in WS353. For measuring the semantic similarity between 

a word pair (𝑤, 𝑤′)  in the datasets, we adopt the sense evaluation metrics AvgSim and MaxSim 

(Reisinger and Mooney, 2010): 

AvgSim(𝑤, 𝑤′) ≝
1

𝐾𝑤𝐾𝑤′
∑ ∑ cos (𝑣𝑤𝑗

, 𝑣𝑤𝑘
′ )

𝐾
𝑤′

𝑘=1

𝐾𝑤

𝑗=1

(5) 
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MaxSim(𝑤, 𝑤′) ≝ max
1≤𝑗≤𝐾𝑤,1≤𝑘≤𝐾𝑤′

cos (𝑣𝑤𝑗
, 𝑣𝑤𝑘

′ ) (6) 

where 𝐾𝑤 and 𝐾𝑤′ denote the number of senses of 𝑤 and 𝑤′, respectively. The AvgSim can be seen as 

a soft metric as it averages all the similarity scores. Whereas the MaxSim can be seen as a hard metric 

as it only selects the senses with maximum similarity score. For measuring the performance of the sense 

embedding, we compute the spearman correlation between the human rated scores and the 

AvgSim/MaxSim scores. Table 1 shows a summary of the benchmark datasets and their relationship 

with the ontologies. In Table 1, row 3 shows the number of words that are both listed in the datasets and 

the ontology. The word count in Roget is 63,942. 

 

 MEN MTurk RW WS353 

Pair count 3,000 287 2,034 353 

Word count 751 499 2,951 437 

Roget 707 416 2,371 412 

 

Table 1. A summary of the semantic relatedness benchmark datasets. 

4.3 Contextual Word Similarity 

Although the semantic relatedness datasets are used in many researches, one major disadvantage is that 

the words in those word pairs do not have contexts. Therefore, we also conduct experiments with the 

Stanford's Contextual Word Similarities (SCWS) dataset (Huang et al., 2012). SCWS consists of 2,003 

word pairs together with human rated scores. A higher score value indicates higher semantic similarity. 

Different from the semantic relatedness datasets, the words in the SCWS have their contexts and part-

of-speech tags. That is, the human subjects can know the usage of the word when they rate the similarity. 

For each word pair, we compute its AvgSimC/MaxSimC scores from the learned sense embedding 

(Reisinger and Mooney, 2010): 

AvgSimC(𝑤, 𝑤′) ≝
1

𝐾2
∑ ∑ 𝑑𝑐,𝑤,𝑘𝑑𝑐′,𝑤′,𝑗𝑑 (𝜋𝑘(𝑤), 𝜋𝑗(𝑤′))

K

𝑘=1

𝐾

𝑗=1

(7) 

MaxSimC(𝑤, 𝑤′) ≝ 𝑑(�̂�(𝑤), �̂�(𝑤′)) (8) 

where 𝑑𝑐,𝑤,𝑘 ≝ 𝑑(𝑣(𝑐), 𝜋𝑘(𝑤))  is the likelihood of context 𝑐  belonging to cluster 𝜋𝑘 , and �̂�(𝑤) ≝

𝜋arg max
1≤𝑘≤𝐾

𝑑𝑐,𝑤,𝑘
(𝑤), the maximum likelihood cluster for 𝑤 in context 𝑐. We use a window size of 5 for 

the words in the word pairs (i.e., 5 words prior to 𝑤/𝑤′  and 5 words after 𝑤/𝑤′ ). Stop words are 

removed from the context. For measuring the performance, we compute the spearman correlation 

between the human rated scores and the AvgSimC/MaxSimC scores. 

4.4 Semantic Difference 

This task is defined to answer if a word has a closer semantic feature to a concept than another word 

(Krebs and Paperno, 2016). In this dataset, there are 528 concepts, 24,963 word pairs, and 128,515 items. 

Each word pair comes with a feature. For example, in the test (𝑎𝑖𝑟𝑝𝑙𝑎𝑛𝑒, ℎ𝑒𝑙𝑖𝑐𝑜𝑝𝑡𝑒𝑟): 𝑤𝑖𝑛𝑔𝑠, choosing 

the first word if and only if cos(𝑎𝑖𝑟𝑝𝑙𝑎𝑛𝑒, 𝑤𝑖𝑛𝑔𝑠) > 𝑐𝑜𝑠(ℎ𝑒𝑙𝑖𝑐𝑜𝑝𝑡𝑒𝑟, 𝑤𝑖𝑛𝑔𝑠), otherwise, choose the 

second word. As this dataset does not provide context for disambiguation, we use the similar strategies 

from the semantic relatedness task: 

AvgSimD(𝑤, 𝑤′) ≝
1

𝐾𝑤𝐾𝑤′
∑ ∑ cos (𝑣𝑤𝑗

, 𝑣𝑤𝑘
′ )

𝐾
𝑤′

𝑘=1

𝐾𝑤

𝑗=1

(9) 

MaxSimD(𝑤, 𝑤′) ≝ max
1≤𝑗≤𝐾𝑤,1≤𝑘≤𝐾𝑤′

cos (𝑣𝑤𝑗
, 𝑣𝑤𝑘

′ ) (10) 
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In AvgSimD, we choose the first word iff AvgSimD(𝑤1, 𝑤′) > AvgSimD(𝑤2, 𝑤′) . In 

MaxSimD, we choose the first word iff MaxSimD(𝑤1, 𝑤′) > MaxSimD(𝑤2, 𝑤′). The performance 

is determined by computing the accuracy. 

5 Results and Discussion 

Table 2 shows the spearman correlation (ρ × 100) of AvgSim and MaxSim between human scores and 

sense embedding’s scores on each benchmark dataset. Row 2 shows the performance of vanilla GloVe 

word embedding. Note that the MaxSim and AvgSim scores will be the same when there is only one 

sense for each word (word embedding). Row 3 shows the performance of the retro model (Jauhar et al., 

2015). 

 

 MEN MTurk RW WS353 Macro Micro 

GloVe 65.7 61.9 30.3 50.3 52.1 51.9 

retro 62.4/67.7 57.4/60.1 15.1/26.9 43.9/51.1 44.7/51.5 44.0/51.6 

GenSense-syn 67.6/67.9 64.1/64.0 33.8/33.6 50.5/52.8 54.0/54.6 54.3/54.5 

GenSense-ant 65.1/65.0 62.1/63.1 31.0/30.9 48.4/47.1 51.6/51.5 51.7/51.6 

GenSense-all 68.8/68.6 65.1/64.8 33.3/33.2 53.2/54.0 55.1/55.2 54.9/54.8 

 

Table 2. ρ × 100 of (MaxSim / AvgSim) on semantic relatedness benchmark datasets. 

 

From Table 2, we find that our proposed model outperforms the comparison models retro and 

GloVe in all the datasets. When comparing our model with retro, the spearman correlation scores of 

MaxSim of each dataset grows at least 6.4. In RW, the spearman correlation score of GenSense exceed 

retro by 18.2. We also discover a significant growth of spearman correlation between GenSense-syn 

and GenSense-all. Surprisingly, the model that only adopts synonyms and positive contextual 

information can outperform retro and GloVe. After utilizing antonym knowledge from Roget, its 

performance can further be improved in all but RW dataset. This result supports an assumption that the 

antonyms in Roget are quite informative and useful. Moreover, GenSense can adapt information from 

synonyms and antonyms to boost its performance. Although our model can pull sense vectors away from 

its reverse sense with the help of antonym and negative contextual information. This shift cannot 

guarantee the new sense vectors will move to a better place with only negative relations. As a result, the 

GenSense-ant does not perform as well as GenSense-syn. Table 2 also shows the macro-averaged and 

micro-averaged results in the rightmost two columns. In both of the additional evaluation metrics, we 

find that the GenSense model outperforms retro with a large margin. These two metrics suggest the 

robustness of our proposed model when comparing to the retro model. 

We also conduct an experiment to test how much benefit we can get from the relation strength. We 

run GenSense-syn over the Roget ontology with a grid of (𝛼1, 𝛼2, 𝛼3) parameters. Each parameter is 

tuned from 0.0 to 1.0 with a 0.1 step size. Table 3 shows the results with MaxSim metric and Table 4 

shows the results with AvgSim metric. Note that the 𝛼1/𝛼2/𝛼3 parameter combinations of the worst or 

the best case may be more than one. In that case, we only report one 𝛼1/𝛼2/𝛼3 setting in Table 3 and 

Table 4 due to the space limitation. From Table 3, we find that the default setting can achieve relatively 

good results when comparing to the best case. Another point worth mentioning is that the worst 

performance happens under .1/1./.1 setting except the WS353 dataset. Similar results can be found in 

Table 4’s AvgSim metric. The results demonstrate the importance of the original word vector and the 

synonyms sense vectors in the model. 

 

 MEN 𝛼1/𝛼2/𝛼3 MTurk 𝛼1/𝛼2/𝛼3 RW 𝛼1/𝛼2/𝛼3 WS353 𝛼1/𝛼2/𝛼3 

GenSense default 67.6 1./1./1. 64.1 1./1./1. 33.8 1./1./1. 50.5 1./1./1. 

GenSense worst 52.4 .1/1./.1 50.3 .1/1./.1 25.1 .1/1./.1 34.8 .1/1./.8 

GenSense best 68.1 .8/.5/.8 64.4 .4/.3 /.4 35.8 .1/.1/1. 52.0 1./.6/.3 

 

Table 3. ρ × 100 of MaxSim on semantic relatedness benchmark. 
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 MEN 𝛼1/𝛼2/𝛼3 MTurk 𝛼1/𝛼2/𝛼3 RW 𝛼1/𝛼2/𝛼3 WS353 𝛼1/𝛼2/𝛼3 

GenSense default 67.9 1./1./1. 64.0 1./1./1. 33.6 1./1./1. 52.8 1./1./1. 

GenSense worst 60.1 .1/1./.1 58.7 .1/1./.1 30.5 .1/1./.1 43.3 .1/1./1. 

GenSense best 68.1 .5/.5/.8 64.2 .3/.5/.4 35.8 .1/.1/1. 53.1 .5/.5/.8 

 
Table 4. ρ × 100 of AvgSim on semantic relatedness benchmark datasets. 

 

Figure 2 shows the ρ × 100 of MaxSim on the semantic relatedness benchmark datasets as function 

of vector dimension. All GloVe pre-trained models are trained on the 6 billion tokens corpus of 50d, 

100d, 200d and 300d. We use the GenSense-all model on the GloVe pre-trained models. Figure 2 shows 

the proposed GenSense-all outperforms GloVe in all the datasets of all the tested dimensions. In GloVe’s 

original paper, they showed GloVe’s performance (in terms of accuracy) is proportional to the dimension 

in the range within 50d and 300d. In this experiment, we show that both GloVe and GenSense-all’s 

performance is proportional to the dimension in the range within 50d and 300d in terms of ρ × 100 of 

MaxSim. Similar results can be found in the AvgSim metric.  

 

 (a) MEN (b) MTurk 

 

  
 (c) RW (d) WS353 

 

  
 Vector dimension 

 

Figure 2. ρ × 100 of MaxSim on semantic relatedness benchmark datasets as function of vector 

dimension. GloVe model is compared. 

 

Table 5 shows the selected MEN’s word pairs and its corresponding GenSense-all, GloVe and retro 

scores for case study.  For GenSense-all, GloVe and retro, we use the MaxSim scores and then sort and 

re-scale to MEN’s score distribution. From Table 5, we find that Gensense-all can improve pre-trained 

word-embedding model (in terms of closeness to MEN’s score, smaller is better) in the following 

situations: (1) both words have a few senses (lizard, reptiles), (2) both words have many senses (stripes, 

train) and (3) one word has many senses and one word has a few senses (rail, railway). Sometimes, the 

retro model increases the closeness to MEN’s score. In other words, GenSense-all can handle all the 

possible situations well and outperform retro.  
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Word pair #senses GenSense-all GloVe retro 

(rail, railway) (15, 2) 1 3 36 

(stripes, train) (20, 17) 2 6 23 

(pregnant, women) (3, 4) 0 8 17 

(curve, dance) (10, 7) 2 6 25 

(blue, happy) (16, 4) 0 5 21 

(dripping, round) (5, 25) 0 4 24 

(nails, wolf) (10, 6) 2 6 26 

(action, truck) (12, 3) 0 9 19 

(lizard, reptiles) (2, 1) 7 13 28 

(amphibians, lizard) (3, 2) 9 16 34 

 
Table 5. Selected MEN’s word pairs and their scores difference with GenSense-all, GloVe and retro 

models. (the smaller the better). 

 

Table 6 shows the spearman correlation (ρ × 100) of Stanford’s Contextual Word Similarity dataset. 

With the sense level information, both GenSense and retro can outperform the word embedding model 

GloVe. The GenSense model performs slightly better than retro. Again, we find that the retrofitting 

model cannot benefit with only negative relation information.  

 

 SCWS 

GloVe 52.9 

retro 54.2/55.9 

GenSense-syn 54.8/56.0 

GenSense-ant 52.9/52.7 

GenSense-all 54.2/55.3 

 

Table 6. ρ × 100 of (MaxSimC / AvgSimC) on SCWS dataset. 

 

Table 7 shows the results of the semantic difference experiment. From Table 7, we find that GenSense 

outperforms retro and GloVe. The accuracy of retro declines in this experiment. This finding 

demonstrates the effectiveness and robustness of our proposed framework. Surprisingly, the antonym 

relation plays an important role when computing the semantic difference. 

 

 Accuracy Precision Recall 

GloVe 58.5 53.3 59.4 

retro 57.5/57.3 52.2/51.9 58.0/52.0 

GenSense-syn 57.8/57.6 52.5/52.3 61.2/59.8 

GenSense-ant 58.0/58.7 52.7/53.3 59.7/61.7 

GenSense-all 58.7/57.6 53.3/52.3 62.4/61.0 

 
Table 7. (Accuracy, Precision, Recall) × 100 of (MaxSimD / AvgSimD) on the semantic difference 

dataset. 

 

6 Conclusion 

In this paper we present GenSense, a generalized framework for learning sense embedding. The 

generalization takes in three parts: (1) we extend the synonym relation to positive contextual neighbor 

relation, antonym relation and negative contextual neighbor relation; (2) within each relation, we 

consider the semantic strength; and (3) we use relation strength between relations to balance different 

components. We then conduct experiments in three types of experiments: semantic relatedness, 

contextual word similarity, and semantic difference and show that the GenSense model outperforms the 

previous approaches. In the future, one of the possible applications is to apply the generalized sense 
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representation learnt by the proposed method in downstream natural language processing applications 

to conduct extrinsic evaluations. We release the source code and the pre-trained model as resource for 

the research community. 12 Other versions of the sense retrofitted embeddings can be found in the 

website. 
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